
Solving POMDPs by Searching the Space of Finite Policies

Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling and Anthony R. Cassandra
Computer Science Dept, Box 1910, Brown University, Providence, RI 02912-1210�

nm, kek, lpk, arc � @cs.brown.edu

Abstract

Solving partially observable Markov decision
processes (POMDPs) is highly intractable in gen-
eral, at least in part because the optimal policy
may be infinitely large. In this paper, we ex-
plore the problem of finding the optimal policy
from a restricted set of policies, represented as
finite state automata of a given size. This prob-
lem is also intractable, but we show that the com-
plexity can be greatly reduced when the POMDP

and/or policy are further constrained. We demon-
strate good empirical results with a branch-and-
bound method for finding globally optimal deter-
ministic policies, and a gradient-ascent method
for finding locally optimal stochastic policies.

1 INTRODUCTION

In many application domains, the partially observable
Markov decision process (POMDP) [1, 22, 23, 5, 9, 4, 13] is
a much more realistic model than its completely observable
counterpart, the classic MDP [11, 20]. However, the com-
plexity resulting from the lack of observability limits the
application of POMDPs to dramatically small decision prob-
lems. One of the difficulties of the optimal—Bayesian—
solution technique is that the policy it produces may use
the complete previous history of the system to determine
the next action to perform. Therefore, the optimal policy
may be infinite and we have to approximate it at some level
to be able to implement it in a finite machine. Another
problem is that the calculation requires reformulating the
problem in the continuous space of belief functions, and
hence it is much harder than the simple finite computation
that is sufficient to optimize completely observable MDPs.

What can we do if we have to solve a huge POMDP? Since
it may be impossible just to represent the optimal pol-
icy in memory, it makes sense to restrict our search to
policies that are reasonable in some way (calculable and

storeable in a finite machine). Knowing that any policy
is representable as a (possibly infinite) state automaton,
the first constraint we would want to impose on the pol-
icy is to be representable by a finite state automaton, or,
as we will call it, a finite “policy graph”. Many previous
approaches implicitly rely on a similar hypothesis: Some
authors [14, 12, 2, 27] search for optimal reactive (or mem-
oryless) policies, McCallum [15, 16] searches the space
of policies using a finite-horizon memory, Wiering and
Schmidhuber’s HQL [26] learns finite sequences of reactive
policies, and Peshkin et al. [19] look for optimal finite-
external-memory policies. All these examples are particu-
lar cases of finite policy graphs, with a set of extra structural
constraints in each case (i.e., not every node-transition and
action choice is possible in the graph). Note that in general,
finite policy graphs can remember events arbitrarily far in
the past. They are just limited in the number of events they
can memorize.

In this paper we study the problem of finding the best policy
representable as a finite policy graph of a given size, pos-
sibly with simple constraints on the structure of the graph.
The idea of searching explicitly for an optimal finite pol-
icy graph for a given POMDP is not new. In the early 70s,
Satia and Lave [21] proposed a heuristic approach for find-
ing � -optimal decision trees. Hansen [6, 7, 8] proposed a
policy iteration algorithm that outputs an � -optimal con-
troller. These solution techniques work explicitly in the
belief space used in the classical—Bayesian—optimal so-
lution of POMDPs, and they output policy-graphs which are
not more than � from this optimal solution. Another ap-
proach uses EM to find controllers that are optimal over a
finite horizon [10].

A characteristic property of our algorithms is that they scale
up well with respect to the size of the problem. Their draw-
back is that their execution time increases quickly with the
size of the policy graph, i.e., with the complexity of the
policy we are looking for. In general, they will be adapted
to large POMDPs where relatively simple policies perform
near optimally. Another characteristic of our approach is
that we do not refer to the value of the optimal Bayesian

solution anymore, we just want the best graph given the
constraint imposed on the number of nodes. Note that the
optimality criterion used is the same as in the Bayesian ap-
proach, i.e., the expected discounted cumulative rewards
(the expectation being relative to the prior belief on the
states). However, since we do not evaluate the solution
produced relative to the optimal performance, the problem
may be solved without using the notion of belief-space.

Our development relies on a basic property of finite-state
controllers that has already been stressed by Hansen [6],
and that is also very close to Parr and Russell’s HAM theo-
rem [18]. Namely, given a POMDP and a finite policy graph,
the sequence of pairs (state of the POMDP, node of the pol-
icy graph) constitutes a Markov chain. Going farther, we
define a new MDP on the cross product of the state-space
and the set of nodes, where a decision is the choice of an
action and of a next node (conditioned on the last obser-
vation). Working in this cross-product MDP presents many
advantages: it allows us to calculate and then differentiate
the value of a fixed policy, to calculate upper and lower
bounds on the value attainable by completing a given par-
tial policy, and also to establish some complexity results.
We use these properties to develop implementations of two
classic search procedures (one global and one local) where
the majority of the computation consists of solving some
Bellman equations in the cross-product MDP. An important
point is that the structure of both the POMDP and the pol-
icy graph (if there is one) is reflected in the cross-product
MDP. It can be used to accelerate the solution of Bellman
equations [3], and hence the execution of the solution tech-
niques. In other words, the algorithms we propose can ex-
ploit the structure of the POMDP to find relatively quickly
the best general finite policy graph of a given size. If this
leverage is not sufficient, we may limit further the search
space by imposing some structure on the policy graph, and
then using this structure to speed up the solution of the
cross-product MDP (for instance, we can limit ourselves to
one of the finite-memory architectures mentioned above).

The paper is organized as follows. First we give a quick
introduction to POMDPs and policy graphs, and define the
cross-product MDP. Then we show that finding the best
deterministic finite policy graph is an NP-hard problem.
There is then no really easy way to solve our problem. In
this paper, we propose two possible approaches: a global
branch and bound search for finding the best determinis-
tic policy graph, and a local gradient descent search for
finding the best stochastic policy graph. These two algo-
rithms are based on solving some Bellman equations in the
cross-product MDP. Therefore, they can take full advan-
tage of any preexisting structure in the POMDP or in the
policy graph. Typically, these algorithms will be adapted
to very structured POMDPs with a large number of states,
a small number of observations, and such that some sim-
ple policies perform well. In the end of the paper, we give

empirical evidence that our approach allows the solution of
some POMDPs whose size is far beyond the limits of clas-
sical solutions.

2 POMDPS AND FINITE POLICY
GRAPHS

2.1 POMDPS

A partially observable Markov decision process (POMDP)
is defined as a tuple

���������	�
�	����������
where:� � is the (finite) set of states;� � is the (finite) set of observations;� � is the (finite) set of actions;� ���������������������� ��!��"��# $���%�

for all & ;� '������()���#*��$�������+�# +,�-.���/*�"��# $������(0 $�1(2�
for all & ;�43 .�5�6�+�7�	()�/�/*��

if
�# 8�5�

,
(0 8�9(

and
�/ �,�-:�;�#*

, for
all & .

The underlying Markov decision process (MDP)�+�����'��������
is optimized is the following way [11, 20]:

given an initial state
�#<

, the aim is to maximize the
expected discounted cumulative reward=!>@?A +B)<�C 3 "7� <ED �
where C5FHGJI �LKE� is the discount factor. The optimal so-
lution is a mapping M�NPO ��QR�

that specifies the action
to perform in each possible state. The optimal expected
discounted reward, or “value function”, is defined as the
unique solution of the set of Bellman equations:S N ���%���1T�UWVXLYLZ\[A]_^`Y�a '�+�7�	()�/� * �b�c�6�+�7�	()�/� * �bd C S N �+� * �_�feg�
for all

�
. It is a remarkable property of MDPs that there

exists an optimal policy that always executes the same ac-
tion in the same state. Unfortunately, this policy cannot be
used in the partially observable framework, because of the
residual uncertainty on the current state of the process.

In the POMDP framework, a policy is in general a rule spec-
ifying the action to perform at each time step as a function
of the whole previous history, i.e., the complete sequence of
observation-action pairs since time 0. A particular kind of
policy, the so-called reactive policies (RPs), condition the
choice of the next action only on the previous observation.
Thus, they can be represented as mappings M5O �hQi�

.
Given a probability distribution j < over the starting state,

o
3

o
3

o
3

o
2

o
2

o
2

o
1

o
1

o
1

Figure 1: Structure of the policy graphs representing reac-
tive policies (

" ��")� �
). The only degrees of freedom are

the choices of the action in the
" ��"

nodes.

each policy M (reactive or not) realizes an expected cumu-
lated reward: =!>@?A +B)< C 3 " j < � M D��

(1)

The classical—Bayesian—approach allows us to determine
the policy that maximizes this value. It is based on updating
the state distribution (or belief) at each time step, depend-
ing on the most recent observations [5, 9, 4, 13]. The prob-
lem is re-formulated as a new MDP using belief-states in-
stead of the original states. Generally, the optimal solution
is not a reactive policy. It is a sophisticated behavior, with
optimal balance between exploration and exploitation. Un-
fortunately, the Bayesian calculation is highly intractable
as it searches into the continuous space of beliefs and con-
siders every possible sequence of observations.

2.2 FINITE POLICY GRAPHS

A policy graph for a given POMDP is a graph where the
nodes are labeled with actions

(F � , the arcs are labeled
with observations

� F �
, and there is one and only one

arc emanating from each node for each possible observa-
tion. When the system is in a certain node, it executes the
action associated with this node. This implies a state transi-
tion in the POMDP and eventually a new observation (which
depends on the arrival state of the underlying MDP). This
observation itself conditions a transition in the policy graph
to the destination node of the arc associated with the new
observation. Every policy has a representation as a possi-
bly (countably) infinite policy graph. A policy that chooses
a different action for each possible previous history will be
represented by an infinite tree with a branch for each possi-
ble history. Reactive policies correspond to a special kind
of finite policy graph with as many nodes as there are ob-
servations in the POMDP, and where all arcs labeled with
the same observation go to the same node (figure 1).

In a stochastic policy graph there is a probability distribu-
tion over actions attached to each node instead of a single
action, and transitions from one node to another are ran-
dom, the arrival node depending only on the starting node

and the last observation. We will use the following nota-
tion:��� is the set of nodes of the graphs,��� F � is the current node at time & ,��� � � �	(2� is the probability of choosing action

(
in node� F � :

� � � ��(2���
	��� ������(�1(" � � � ������W� U���� & ���� � � ���0� � * � is the probability of moving from node � F� to node � * F � , after observation
� F � :

� � � ���0� � * � �
	���h���E� � +,�- � � * " � � ��� � �,�- �!��������W� U���� & ���� < is the probability distribution of the initial node � <
conditioned on the first observation

��<
:

� < ���0� � ���
	��� � �L� � < � � "E� < �1��� �
In some cases, we will want to impose extra constraints on
the policy graph. In most of this paper, we will limit our-
selves to “restriction constraints” which consist in restrict-
ing the set of possible actions executable in some nodes,
and/or restricting the set of possible successors of some
nodes under some observations. Note that forcing the graph
to implement an RP represents a set of restriction constraint
as defined here. We consider more sophisticated sets of
constraints in section 4.

2.3 THE CROSS-PRODUCT MDP

One advantage of representing the policy as a policy graph
is that the cross-product of the POMDP and the policy graph
is itself a finite MDP. Another interesting point is that all the
structure of both the POMDP and the policy graph (if there
is some) is represented in this cross-product MDP. It will
allow us to develop relatively fast implementations of some
classical techniques to solve our problem.

Calculating the value of a policy graph The following
theorem has been used by Hansen [6, 8, 7], and his closely
related to Parr and Russell’s HAM theorem [18].

Theorem 1 Given a policy graph M � � � � � � and a
POMDP

���������	�
�	����������
, the sequence of node-state

pairs
� � ��/�# _� generated constitutes a Markov chain.

The influence diagram of figure 2 proves this property:� � �,�-%�/�/ �,�-	� depends only on
� � ��/�# � . The transition ma-

trix ��� of this Markov chain is given by

� � � � � �/�%���L� � * �/� * �_�� AXEY�Z � � � �	(2�c'������()��� * � A��Y�� � �+� * �	��� � � � ���0� � * � � (2)

ta

t+1n

t+1o

t+1s

tn

ts

Figure 2: Influence diagram proving the Markov property
of the cross-product MDP. Dotted arrows represent depen-
dencies that we did not take into account in this work, but
that are sometimes represented in other formulations. As
shown, theorem 1 is still valid in this more general frame-
work.

In the same way, we can calculate the expected immediate
reward �� � associated with each pair

� � ���E� :
�� � � � �/�E��� AXLYLZ � � � �	(2� A] ^ Y�a '�+�7�	()�/� * �_�6������()��� * � � (3)

Then the value function of the policy M is found by solving
the fundamental equation (in matrix form):

�S � � �� � d C � � �S � � (4)

Since ��� is a stochastic matrix and C � K
, the matrix

�����C ���2� is invertible and we have:

�S � �5����� C � � ��� - �� � � (5)

Finally, the value of the policy, independent of the starting
node and state, is � � �

�j < �S � � (6)

where �j < is the joint probability distribution on � < and
�#<

:

�j < � � ���E��� j < �+�E� A��Y � � �+�7�	��� � < ���0� � � �
Differentiating this value with respect to the parameters of
the graph will enable us to climb its gradient.

Solving the cross-product MDP. A complete MDP is de-
fined on �� � �
	 � . In each pair

� � ���E� , we have to choose
an action

(
, wait for the new observation, and then chose

the next node. It is equivalent to choosing an action and
a mapping ��� O � Q � which determines the next node
as a function of the next observation. Therefore, the action
space of the cross-product MDP is ��!�!� 	 � �

.

Theorem 2 The tuple ��8� ��
� � � ���� is a finite stationary
Markov decision process, where �� � ��	 � , �� � � 	 � �

,

�'�_� � ���E������()� � � ���L� � * ���E�_���1'�+�7�	()�/� * � A
��Y������ ������������ B � ^

���+� * �����
and ��
�_� � �/�E������()� ��� ����� � *��/�/*`�_�����6�+�7�	()�/�/*`�

.

The fundamental equation of the MDP is, in matrix form:

�S N �1T�UWVXEY�Z T�UWV� � Y����! �� d C � �S N#" �
where the maximization is applied row by row. When we
expand this equation, the maximization over �$� F � �

can
be replaced by a maximization over � * F � and moved to
the end of the equation:

�S N � � �/�E�$�1T�UWVXLYLZ&% A] ^ Y7a '�+�7��(�/� * �('%�6�+�7�	()�/� * �d C A��Y�� ����� * �	��� T�U�V� ^ Y�� �S N ��� * � � * �*),+ � (7)

The expected optimal reward, independent of the starting
state and node, is

� N � �j < �S N . The stationary optimal
policy of the cross-product MDP is a mapping �M N O ��;Q
�� . Note that this optimal policy is generally not imple-

mentable in the policy graph, since it may associate two
different actions with the same node, depending on the state
with which the node is coupled. In other words, we need to
know the current state to use this policy. The agent using
a policy graph is basically embedded in the cross-product
MDP, but it has only partial observability of its product state� � ��/�#): it sees � but not

�#
. The cross-product MDP is in

fact a POMDP
� ���� ��
� ��'� ���� � � �� � where �� � � and �� is

the projection of �-	 � on � . However, the solution of the
fundamental equation (7) is useful in some algorithms, be-
cause it represents an upper-bound of the performance at-
tainable by any implementable policy. We will use this in a
branch-and-bound algorithm for finding the optimal deter-
ministic policy graph. Note that the addition of restriction
constraints on the policy, as defined in section 2.2, does not
invalidate theorem 2. It just limits the set of possible ac-
tions in some states of the cross-product MDP, and then it
reduces the complexity of its solution. As a consequence,
the branch-and-bound algorithm will also be able to find
the best graph under some restriction constraints.

Computational leverage. It is a very important point
that most of the computation performed by the algorithms
that will follow consists of solving a Bellman fundamen-
tal equation with a fixed policy as in (4), or for the sake of
finding the optimal deterministic policy as in (7). This can
be done by successive approximations, the algorithm being
called “value iteration” in the case of (7). The complexity
of the algorithm is

���	" �� " .�" ��"`" ��" ��� � �	" � " .�" � " .0" � " " ��" �
(times the number of iterations, which can be

����" ��8" �). The
important point is that any structure in the transition matrix
� can be exploited while executing these back-ups. The

structure of � has two components:

the structure of the POMDP: A sparse transition matrix
of the POMDP provides leverage that allows the

speed-up of successive-approximation iterations [3].
If / � " � "

is the branching factor of the POMDP (i.e.,

the average number of possible successors of a state)
then the complexity can be reduced to

� �	" � " . / " �8" � .
For instance, deterministic transitions reduce the com-
plexity by a factor of

" � "
. In the same way, a sparse

observation matrix is exploitable. For instance, deter-
ministic observations reduce the complexity by a fac-
tor of

" ��"
.

the structure of the policy graph: If the leverage gained
from the structure of the POMDP is not sufficient,
then one can choose to restrict further the search
space by imposing structural constraints on the graph,
and using this structure to speed up the calculation.
An extreme, but often adopted, solution is to look
for the best RP. In this case, the gain is a factor
of
" ��"

(the complexity is
���	" ��" . " �8" . " ��" �

instead of����" � " .�" �8" .�" ��"`" ��" ��� ����" � " � " � " . " ��" �
). We will say

more about constraining the policy graph in section 4.

When both the problem and the policy are structured, the
leverage gained can be bigger than just the addition of the
effect of the two structures. For instance, evaluating a
RP in a completely deterministic problem can be done in����" � "`" ��" �

instead of
����" � "`" � "`" ��" �b�����	" ��"`" � " " ��" �

.

3 FINDING THE OPTIMAL POLICY
GRAPH

In this paper, we consider the problem of finding the best
policy graph of a given size for a POMDP. Littman [14]
showed that finding the best RP for a given POMDP is an
NP-hard problem. First, we generalize this result to any
finite policy graph with a given number of nodes and any
set of restriction constraints.

Theorem 3 Given a POMDP and a set of restriction con-
straints, the problem of finding the optimal deterministic
policy graph satisfying the constraints is NP-hard.

The proof is straightforward: Finding the best deterministic
policy graph is equivalent to finding the best deterministic
RP of the cross-product POMDP. Then the result follows
from Littman’s theorem.

The techniques for solving NP-hard problems may be clas-
sified into three groups: global search, local search and
approximation algorithms. In this paper, we will use two
classic techniques, a global search (section 3.1) and a local
search (section 3.2). We will consider a possible approxi-
mation algorithm in section 3.3.

3.1 GLOBAL SEARCH

A heuristically guided search is used to find the best deter-
ministic policy graph of a given size, whatever the restric-
tion constraints imposed on � (actions) and � (structure).

It is a branch-and-bound algorithm; i.e., it systematically
enumerates the set of all possible solutions using bounds
on the quality of partial solutions to exclude entire regions
of the search space. If the lower bound of one partial policy
is greater than the upper bounds of others, then it is useless
explore these partial policies. Otherwise, each possible ex-
tension of them will considered in time. Therefore, the al-
gorithm is guaranteed to find the optimal solution in finite
time. Note that this approach is a generalization of a pre-
vious algorithm proposed by Littman [14]. His algorithm
is limited to policy graphs representing RPs and to POMDPs
with a very particular structure: state-transitions and obser-
vations are deterministic, and the problem is an achieve-
ment task (i.e., there is a given goal state that must be
reached as soon as possible). The formalism proposed here
handles any kind of POMDP and any kind of policy graph
with restriction constraints. However, Littman gives more
details on some aspects of the algorithm, and the reader can
refer to his paper to complete the brief description that we
give here.

Ordering of free parameters. The tree of all possible
policies is expanded (in depth-first, breadth-first, or in a
best-first way) by picking the free parameters of the pol-
icy one after the other, and considering all possible assign-
ment values for each of them. The game of pruning some
branches based on upper bound/lower bounds comparison
is added onto that. The size of the tree that is actually ex-
panded in this process strongly depends on the order in
which the free parameters are picked. In our case, it is
important that the free values of � come before the free
values of � . In other words, when building a solution, we
assign actions to the nodes first, and then we fix the struc-
ture of the graph. Otherwise, no pruning is possible before
all possible structures have been expanded (this is due to
the nature of the upper-bound that we use, see below). In
our implementation, the parameter � < is expanded after �
but before � . There is also an issue with the symmetry of
the policy-graph space. For instance, in the absence of re-
striction constraints, we can permute the role played by the
different nodes without changing the policy. Each policy
graph is then represented by

" � "�� leaves of the tree. We can
avoid enumerating equivalent graphs by imposing some ar-
bitrary rule when expanding the tree. For instance we can
impose that the index of the action attached to a node � al-
ways be greater or equal to the index of the action of node
�
d9K

, for all � . This simple trick can improve greatly the
performance of the heuristic search, merely dividing the
execution time by

" � "�� .

Upper bounds. A partial solution is a general finite pol-
icy graph with more restriction constraints than initially
(each time we specify an action or a node-transition, we
add a constraint). Then we can get an upper bound by solv-
ing the cross-product MDP, as explained in the second part

of section 2.3, and taking the product �j < �S N . A completely
specified policy graph corresponds to an RP of the cross-
product (PO)MDP, so no policy graph can do better than
the optimal solution of the cross-product MDP. Note that
this upper bound has a nice monotonicity property: it does
not increase when we fix a free parameter, and it is equal to
the true value of the policy graph when the graph is com-
pletely specified. On the other hand, as long as no value
of � is specified, the optimal policy found by solving the
cross-product MDP is equivalent to the optimal policy of the
original MDP

�+�����'��������
: the choice of the action in each� � �/�E� is independent of � and depends only on

�
. Hence,

the calculated upper bound is always equal to the value of
the optimal policy of the cross-product MDP. This is why
no pruning can be done as long as no value of � has been
specified and this parameter must be the considered first
when expending the tree.

Lower bounds. If the algorithm searches in depth-first
order, then we can use the values of the complete poli-
cies already expanded to determine lower bounds on the
best performance attainable by extending each partial pol-
icy. Otherwise, we can find a lower bound for a given par-
tial policy by completing it at random and calculating the
value of the resulting complete policy. An improvement
consists of performing a simple local optimization after
having completed the policy [14]. In our implementation,
we also used a heuristic technique based on the solution of
the cross-product MDP to complete the partial policy. We
calculate the performance of a complete policy by solving
equation (4) in the cross-product MDP.

Complexity. The calculation of the upper and lower
bounds of each node of the expanded tree requires solving
some Bellman equations in the cross-product MDP. Hence
it can be done in

����" � " . " � " . � , or less if there is some
structure in the POMDP or the policy. To reduce the num-
ber of iterations of successive approximation executed dur-
ing this calculation, one can store, with each partial policy,
the value function found when calculating its upper bound.
Then we can start the computation of the upper bound of
a child partial policy starting from the value of its parent.
Since they are often not very different, we can gain a lot of
time with this trick. However, the memory space needed in-
creases dramatically. Even if we can calculate the bounds
relatively quickly, the real problem is how many nodes it
will be necessary to expand before reaching the optimum.
In the worst case, the complete tree of all possible solu-
tions will be expanded, which represents a complexity ex-
ponential in the number of degrees of freedom of the policy
graph. In practice, our simulations showed that many fewer
nodes are actually expanded. Note that adding simple con-
straints on the policy reduces not only the complexity of
the solution of the cross-product MDP, but also the size of
the search space and hence the number of nodes expanded.

3.2 LOCAL SEARCH

In this approach, we try to find the best stochastic policy
graph by treating this problem as a classical non-linear nu-
merical optimization problem. Since the value of a policy
graph is continuous and differentiable with respect to the
policy parameters, we can calculate its gradient and climb
it in many different ways. We will not develop all the pos-
sibilities for climbing the gradient here, but we will rather
focus on the calculation of the gradient, and then just de-
pict a simple implementation of gradient ascent. Note that
since the gradient may be calculated exactly, this approach
is guaranteed to converge to a local optimum. The topology
of the search space, and hence the number of local optima,
depends on two things: the structure of the POMDP at hand,
and the constraints imposed on the policy. By introducing
constraints on the policy, we can hope not only to reduce
the execution time of the algorithm, but also to change the
“landscape” for a less multimodal one.

Calculating the gradient. The value
� �

of a policy
graph M is given by equation (6). For each policy parameter� we have

� � ��� � � � �j < � �S ��� � � . The value function �S �
is given by (5). Hence we have� �S �� � �5��� � C � � ��� -�� � �� �� � d C � ���� � ��� � C � � ��� - �� �
	 �
We are interested in the gradient with respect to the pol-
icy parameters, i.e., we will consider � � � � � ��(2� and� � � � � �	�0� � * � . The partial derivative of ��� and �� � with
respect to these variables can be calculated easily starting
from (2) and (3). The main difficulty in the calculation of
the gradient is inverting the matrix

����� C � � � . If we want
to exploit the structure of ��� , we can do it by successive
approximation, the basic update rule being:�� �:d C � � � � (8)

where
�

is an
" � "`" � " 	 " � " " � " matrix. Without any useful

structure in ��� , the complexity of a complete back up is
then in

� �	" �� " � " ��"`" ��" � . Once the matrix is inverted, the
inverse can be used to calculate the gradient with respect to
any parameter � . A minor acceleration can be obtained by
using the value of

��� � C ��� � � - at the previous point to start
the iterative computation of this value at the new point. It
can reduce the number of iterations of (8) at each step, but
it is still a matrix-wise DP with a complexity in

� �	" �� " � � ,
and hence in

� �	" �8" � �
.

There is another way of computing the gradient with a com-
plexity only in

����" �� " ./� . Instead of performing the matrix-
wise DP to calculate

��� � C ���2� � - explicitly, we perform
several (classical) vector-wise DPs for which complexity
is in

����" ��8" ./� , or less if there is some structure in � or�
. First we compute �S � by solving (4), which implies a

vector-wise DP with complexity in
� �	" �� " .�" ��"`" ��" � . Then

we calculate

�S - �
	��� � �� �� � d C � ���� � �S � �
At last, we get

� �S ��� � � �9��� � C ��� � � - �S - by iterating

�S . � �S - d C � � �S . �
which is also a vector-wise, square-complexity DP. The
total complexity of this calculation is

��� � " ��8" .�" ��"`" ��" � (ne-
glecting the calculation of �S .). Unfortunately, the calcula-
tion must be re-done for each policy parameter � , since �S -
and �S . depend on � . Thus, we have divided the complex-
ity by a factor of

" �� " , but multiplied it by the number of
free variables of the graph. However, this approach will be
useful in most cases, since there are often many fewer free
variables in the policy graph than “cross-product states”.
For instance, if we are looking for the best reactive policy,
then the indirect calculation allows us to gain a factor of" � " �)" ��"

.

Climbing the gradient. Climbing the gradient consists
of updating each free value � with the rule � � � d
� � � � � � , where

�
is the step-size parameter. In our case

the problem is somewhat more complicated since all the
parameters that we optimize are probabilities and we have
to ensure that they stay valid (i.e., inside of the simplex)
after each update. There are numerous ways for doing that,
including renormalizing and using the soft-max function.
In our implementation, we chose to project the calculated
gradient on the simplex, and then apply it until we reach an
edge of the simplex. If we reach an edge and the gradient
points outside of the simplex, then we project the gradient
on the edge before applying it.

Related work. The idea of using a gradient algorithm for
solving POMDPs has already been pursued by several au-
thors [2, 12, 27]. The main difference between this work
and ours is that these authors use a Monte-Carlo estima-
tion of the gradient instead of an exact calculation, and that
they limit themselves to RPs, which is much less general
than our approach. Moreover, Jaakkola et al. do not use the
exponentially discounted criterion (1), but the average re-
ward per time step. In a companion paper [17], we propose
a stochastic gradient descent approach for learning finite
policy graph during a trial-based interaction with the pro-
cess.

3.3 OTHER APPROACHES

A Monte-Carlo approach based on Watkins’Q-learning
[25, 24] is also applicable to our problem. For instance, we
can an use Q-learning based on observation-action pairs to
find (with no guarantee of convergence) the optimal RP for
a POMDP [14]. Another instance is Wiering and Schmid-
huber’s HQL [26], which learns finite sequences of RPs.

U L

Figure 3: The load/unload problem with 8 locations: the
agent starts in the “Unload” location (U) and receives a re-
ward each time it returns to this place after passing through
the “Load” location (L). The problem is partially observ-
able because the agent cannot distinguish the different lo-
cations in between Load and Unload, and because it can-
not perceive if it is loaded or not (

" � "b� K��
,
" ��")� �

and" ��"�� �
).

This Monte-Carlo approach works only if there are strong
structural constraints on the graph, and thus cannot be ap-
plied for finding general finite policy graphs. Note also that
Littman reported observing a great superiority (in terms of
execution time) of the global branch-and-bound search over
the Monte-Carlo approach, in the case where the graph is
constrained to encode a simple RP. Our simulations with
other architectures (sets of structural constraints) showed
similar results: in general, the Monte-Carlo approach can-
not compete with the two others.

4 INTRODUCING STRUCTURAL
CONSTRAINTS

Because the majority of their computation is to perform
Bellman back-ups in the cross-product MDP, the algorithms
outlined above can take advantage of any preexisting struc-
ture in the POMDP. However, this leverage can be insuffi-
cient if the problem is too big or too difficult for the two
techniques. In this case, one may whish to restrict further
the search space by imposing structural constraints on the
policy graph. For instance, a simple solution consists of
defining a neighborhood for the nodes of the graph, and
allowing transitions only to a neighboring node. This cor-
responds to a set of restriction constraints (� is forced to
take the value zero in many points), and hence the algo-
rithm above can still be applied. A somehow extreme so-
lution consists of limiting the search to reactive policies
(then � is completely fixed in advance). More complex sets
of constraints can also be used, for instance, we can limit
the search to policy representable as a finite sequence of
RPs (with particular rules governing the transition from one
RP to another), as in Wiering and Schmidhuber’s HQL [26].
Other instances include the finite-horizon memory policies
used by McCallum [15, 16], or the external-memory poli-
cies used by Peshkin et al. [19]. Although these architec-
tures cannot be described only in terms of restriction con-
straints (there are also equality constraints between differ-
ent parameters of the graph), the previous results and al-
gorithm can be extended to each of them in particular. In
other words, we can use the previous algorithm to find� the best RP-sequence of a given length,

0

200

400

600

800

1000

1200

100 200 300 400 500

E
xe

cu
tio

n
tim

e
(s

)

Number of states

Load/Unload problem

ga

bfh

dfh

Figure 4: Simulations results obtained with the load/unload
problem: execution time of the algorithms as a function of
the size of the problem (ga: gradient ascent, dfh: depth first
heuristic search, bfh: breadth first heuristic search).� the best policy using a given finite-horizon memory,� the best policy using an external-memory of a given

size.

(we can also show that it is NP-hard to solve these prob-
lems).

What do we gain and what do we lose when we impose
a structure on the policy graph? In general, imposing
structural constraints reduces the number of parameters per
node (which should help both techniques), and modifies the
topology of the search space (which influences the gradi-
ent descent approach). Another point is that the best graph
without the constraints can be better than the best graph
with the constraints, i.e., the constraints can decrease the
value of the best solution. Even if this does not happen,
more nodes may be required to reach the best performance
with the constraints than without. Consider, for instance,
the load/unload problem represented in figure 3. This sim-
ple problem is solved optimally with a two-node policy
graph, or with a sequence of two RPs as used in HQL. As an
RP is encoded with an

" ��"
-node graph, any sequence of two

RPs will be encoded by at least
� " ��"W� �

nodes. However,
the number of parameters per node will be smaller than in
the unconstrained case. In general, adding structure will be
interesting if we choose an architecture that fits the prob-
lem at hand. Hence, it is a question of previous knowledge
about the problem at hand and its optimal solution.

5 SIMULATION RESULTS

In our first experiments, we used the simple load/unload
problem of figure 3 with an increasing number of loca-
tions, to see how both algorithms scale up to increasing
problem-size, and how they compare. Since it is a very

S

G

Figure 5: A partially observable stochastic maze: the agent
must go from the starting state marked with an “S”to the
goal marked with an “G”. The problem is partially observ-
able because the agent cannot perceive its true location, but
only its orientation and the presence or the absence of a
wall on each side of the square defining its current state.
The problem is stochastic because there is a non-zero prob-
ability of slipping, so that the agent does not always know
if its last attempt to make a move had any consequence on
its actual position in the maze.

easy POMDP, the results obtained represent a kind of upper
bound on the performance of the algorithms. It is unlikely
that they will perform better on another (harder) problem.
During this experiment

" � " was set to its optimal value of
2 and the gradient algorithm always started from the center
of the simplex (i.e., the policy graph is initialized with uni-
form distributions).1 We measured the time of execution of
each algorithm, as a function of

" � "
. In the case of gradient

ascent, we stopped when we reached 99% of the optimal.
When the heuristic search uses a stochastic calculation of
upper bounds, we average the measure over 50 runs. C was
set to 0.996 (a big value is necessary to accommodate big
state-spaces), and the learning rate of gradient descent was
optimized. The results are given in figure 4. They show
that the heuristic search clearly outperforms the gradient
algorithm, which becomes numerically unstable when the
number of states increases in this kind of geometrically-
discounted absorbing problem.

In the second set of experiments, we wanted to measure
how far our algorithms can go in terms of problem size,
in a problem more difficult than the simple load/unload.
We used the a set of partially observable mazes with the
regular structure represented in figure 5, and whose size
varies from 9 to 989 states (

" ��"2���
and

" ��" � �
). These

mazes are not particularly easy, since they have only two
different optimal paths. The minimal number of nodes for
solving them is 4, one per action (although the policy is not
reactive). The time required for the (depth first) branch-
and-bound algorithm to find the optimal solution with this
optimal number of nodes is shown in figure 6. We see that

1We used a simpler version of the algorithms where the start-
ing node is fixed. Otherwise, the policy using only uniform dis-
tributions is a (very unstable) local optimum.

0

50

100

150

200

250

300

350

200 400 600 800

E
xe

cu
tio

n
tim

e
(m

in
)

Number of states

Maze Problem

dfh

Figure 6: Performance of the branch-and-bound algorithm
on the maze problem: execution time as a function of the
number of states.

we can solve a partially observable maze with almost 1000
states in a less than 6 hours. It represents a performance
far above the capacities of classic approaches for solving
POMDPs. Note also that, as the number of states grows,
the measured complexity is almost linear in the number of
states.

6 CONCLUSION

We studied the problem of finding the optimal policy rep-
resentable as a finite state automaton of a given size, pos-
sibly with some simple structural constraints. This ap-
proach by-passes the continuous and intractable belief-state
space. However, we showed that we end up with a NP-
hard problem anyway. Then we proposed to use two classic
search techniques, and developed efficient implementations
of them that allow using the structure of the problem to ac-
celerate the computation. If this is not sufficient, bigger
leverage can be gained by imposing structure on the policy.
However, our algorithms are limited by necessity to enu-
merate at least once per iteration, the complete state space
of the POMDP. In a companion paper [17], we propose an
indirect learning algorithm that avoids this bottleneck.

References

[1] K.J. Astrom. Optimal control of Markov decision pro-
cesses with incomplete state estimation. J. Math. Anl.
Appl., 10, 1965.

[2] L.C. Baird and A.W. Moore. Gradient descent for
general reinforcement learning. In Advances in Neu-
ral Information Processing Systems, 12. MIT Press,
Cambridge, MA, 1999.

[3] C. Boutillier, T.L. Dean, and S. Hanks. Decision the-
oretic planning: structural assumptions and computa-

tional leverage. Journal of AI Research, To appear,
1999.

[4] A.R. Cassandra. Exact and Approximate Algorithms
for Partially Observable Markov Decision Processes.
PhD thesis, Brown University, 1998.

[5] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman.
Acting optimally in partially observable stochastic
domains. In Proceedings of the Twelfth National Con-
ference on Artificial Intelligence, 1994.

[6] E.A. Hansen. An improved policy iteration algorithm
for partially observable MDPs. In Advances in Neu-
ral Information Processing Systems, 10. MIT Press,
Cambridge, MA, 1997.

[7] E.A. Hansen. Finite-Memory Control of Partially
Observable Systems. PhD thesis, Department of
Computer Science, University of Massachusetts at
Amherst, 1998.

[8] E.A. Hansen. Solving POMDPs by searching in pol-
icy space. In Proceedings of the Eighth Conference on
Uncertainty in Artificial Intelligence, pages 211–219,
Madison, WI, 1998.

[9] M. Hauskrecht. Planning and Control in Stochas-
tic Domains with Imperfect Information. PhD thesis,
MIT, Cambridge, MA, 1997.

[10] O. Higelin. Optimal Control of Complex Structured
Processes. PhD thesis, University of Caen, France,
1999.

[11] R.A. Howard. Dynamic Programming and Markov
Processes. MIT Press, Cambridge, 1960.

[12] T. Jaakkola, S. Singh, and M.R. Jordan. Rein-
forcement learning algorithm for partially observable
Markov problems. In Advances in Neural Informa-
tion Processing Systems, 7. MIT Press, Cambridge,
MA, 1994.

[13] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101, 1998.

[14] M.L. Littman. Memoryless policies: Theoretical lim-
itations and practical results. In From Animals to
Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior. MIT
Press, Cambridge, MA, 1994.

[15] R.A. McCallum. Overcoming incomplete perception
with utile distinction memory. In The Proceedings
of the Tenth International Machine Learning Confer-
ence, Amherst, MA, 1993.

[16] R.A. McCallum. Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, Univer-
sity of Rochester, Rochester, NY, 1995.

[17] N. Meuleau, L. Peshkin, K.E. Kim, and L.P. Kael-
bling. Learning finite-state controllers for partially
observable environments. Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intel-
ligence, To appear, 1999.

[18] R. Parr and S. Russell. Reinforcement learning with
hierarchies of machines. In Advances in Neural In-
formation Processing Systems 11. MIT Press, Cam-
bridge, MA, 1998.

[19] L. Peshkin, N. Meuleau, and L.P. Kaelbling. Learn-
ing policies with external memory. Proceedings of
the Sixteenth International Conference on Machine
Learning, To appear, 1999.

[20] M.L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley, New
York, NY, 1994.

[21] J.K. Satia and R.E. Lave. Markov decision processes
with probabilistic observation of states. Management
Science, 20(1):1–13, 1973.

[22] R.D. Smallwood and E.J. Sondik. The optimal con-
trol of partially observable Markov decision processes
over a finite horizon. Operations Research, 21:1071–
1098, 1973.

[23] E.J. Sondik. The optimal control of partially observ-
able Markov decision processes over the infinite hori-
zon: Discounted costs. Operations Research, 26,
1978.

[24] R.S. Sutton and A.G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[25] C. Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, 1989.

[26] M. Wiering and J. Schmidhuber. HQ-Learning. Adap-
tive Behavior, 6(2):219–246, 1997.

[27] R.J. Williams. Towards a theory of reinforcement-
learning connectionist systems. Technical Re-
port NU-CCS-88-3, Northeastern University, Boston,
MA, 1988.

