Learning policies for partially observable environments: Scaling up

Michael L. Littman
mlittman@cs.brown.edu

Anthony R. Cassandra
arc@cs.brown.edu

Leslie Pack Kaelbling
Ipk@cs.brown.edu

Department of Computer Science
Brown University

Providence, RI 02912-1910

Abstract

Partially observable Markov decision pro-
cesses (POMDP’s) model decision problems in
which an agent tries to maximize its reward
in the face of limited and/or noisy sensor
feedback. While the study of POMDP’s is mo-
tivated by a need to address realistic prob-
lems, existing techniques for finding optimal
behavior do not appear to scale well and have
been unable to find satisfactory policies for
problems with more than a dozen states. Af-
ter a brief review of POMDP’s, this paper dis-
cusses several simple solution methods and
shows that all are capable of finding near-
optimal policies for a selection of extremely
small POMDP’s taken from the learning litera-
ture. In contrast, we show that none are able
to solve a slightly larger and noisier prob-
lem based on robot navigation. We find that
a combination of two novel approaches per-
forms well on these problems and suggest
methods for scaling to even larger and more
complicated domains.

1 INTRODUCTION

Mobile robots must act on the basis of their current
and previous sensor readings. In spite of improve-
ments in technology, a robot’s information about its
surroundings is necessarily incomplete: sensors are im-
perfect, objects occlude one another from view, the
robot might not know its initial status or precisely
where it is. The theory of partially observable Markov
decision processes (POMDP’s) (Astrom, 1965; Small-
wood and Sondik, 1973; Cassandra et al., 1994) mod-
els this situation and provides a basis for computing
optimal behavior.

A variety of algorithms have been developed for solv-
ing PoMDP’s (Lovejoy, 1991), but because the prob-
lem is so computationally challenging (Papadimitriou
and Tsitsiklis, 1987), most techniques are too ineffi-
cient to be used on all but the smallest problems (2 to

5 states (Cheng, 1988)). Recently, the Witness algo-
rithm (Cassandra, 1994; Littman, 1994) has been used
to solve POMDP’s with up to 16 states. While this prob-
lem size is considerably larger than prior state of the
art, the algorithm is not efficient enough to be used
for larger POMDP’s.

Thus, the generality and expressiveness of the POMDP
framework comes with a cost: only extremely small
problems can be solved using available techniques.
This paper is an incremental attempt at narrow-
ing the gap between promise and practice. Using
reinforcement-learning techniques and insights from
the POMDP literature, we show how a satisfactory pol-
icy can be found for a POMDP with close to 100 states
and dozens of observations.

We assume that a complete and accurate model of the
state transition dynamics is given and use various tech-
niques to construct a policy that achieves high reward.
Even with these restrictions, the problem of finding
optimal behavior is still too difficult and we have cho-
sen to simplify it in several respects. First, we will
be satisfied if we can find reasonably good suboptimal
policies. Secondly, our training and testing is done
using simulated runs from a fixed initial distribution,
limiting the set of situations for which the algorithms
need to find good behavior.

The structure of the paper is as follows. The introduc-
tion summarizes formal results concerning the POMDP
model. The next section describes several methods for
finding approximately optimal policies and provides
evidence that all perform comparably on a collection
of extremely small problems. Of these, a simple ap-
proach based on solving the underlying MDP is clearly
the most time efficient. None of these approaches can
solve two slightly larger navigation problems and so
the next section presents a more successful hybrid ap-
proach that seeds learning using the) values of the
underlying MDP. The concluding section considers a
class of problems that require a richer representation
for policies and presents preliminary results on a tech-
nique for learning such policies.

A

Figure 1: A tiny navigation environment.

2 PARTIALLY OBSERVABLE
MARKOV DECISION
PROCESSES

This section reviews the operations research literature
on POMDP’s.

2.1 DEFINITIONS AND EXAMPLE

A POMDP is a tuple < S, A, T, R, O, > where S is a
set of states, A a set of actions, and €2 a set of obser-
vations. We will only consider the case in which these
sets are finite.

The functions T' and R define a Markov decision pro-
cess (MDP) (Bertsekas, 1987) with which the agent in-
teracts without direct information as to the current
state. The transition function, T : S x A — TI(S),
specifies how the various actions affect the state of
the environment. (TI(-) represents the set of discrete
probability distributions over a finite set.) The agent’s
immediate rewards are given by R: S x A — R. The
agent’s decisions are made based on information from

its sensors (observations) formalized by O : § x A —
Q).

Our goal in this work is to take a POMDP and find a pol-
icy, which is a strategy for selecting actions based on
the information available to the agent, that maximizes
an infinite-horizon, discounted optimality criterion.

Figure 1 depicts a tiny navigation POMDP that we use
for explanatory purposes. Tt consists of 13 states (4
possible orientations in each of 3 rooms and a goal
state which is denoted by a star), 9 observations (rel-
ative location of the surrounding walls, plus “star”),
and 3 actions (forward, rotate left, rotate right). The
problem is intended to model a robot in a simple office
environment. In the figure, the robot symbol occupies
the “East in Room a” state. The agent’s task is to
enter the room marked with the star, at which point
it receives a reward of +1. After receiving the reward,
the agent’s next action transports it at random into
one of the 12 non-goal states. Otherwise, transitions
and observations are deterministic in this example.

2.2 THE BELIEF MDP

In the tiny navigation environment, the immediate ob-
servations do not supply enough information for the
agent to disambiguate its location nor are they suffi-
cient for indicating the agent’s best choice of action.
For example, if the agent sees a wall behind it and to
its left, it might be in “North in Room " (optimal
action is to turn right) or “South in Room ¢” (optimal
action is to go forward to the goal).

Some form of memory is necessary in order for our
agent to choose its actions well. Although many archi-
tectures are possible, one elegant choice is to maintain
a probability distribution over the states of the under-
lying environment. We call these distributions belief
states and use the notation b(s) to indicate the agent’s
belief that it is in state s when the current belief state
is b € TI(S). Using the model, belief states can be up-
dated based on the agent’s actions and observations
in a way that makes the beliefs correspond exactly to
state occupation probabilities.

From a known starting belief state, it is easy to use the
transition and observation probabilities to incorporate
new information into the belief state (Cassandra et al.,
1994). As an example, consider an agent that is started
in any of the 12 non-goal states of the tiny navigation
environment with equal probability: b(s) = 1/12 for
all non-goal states. If the agent chooses to turn right
and then sees walls in front of it and to its right, only
two states are possible:

b(South in Room b) = b(North in Room ¢) =1/2.

After next moving forward and seeing walls in all di-
rections except behind, the agent is sure of where it
is:

b(North in Rooma) = 1.

Since the agent’s belief state is an accurate sum-
mary of all the relevant past information, it is a suffi-
cient statistic for choosing optimal actions (Bertsekas,
1987). That is, an agent that can choose the optimal
action for any given belief state is acting optimally in
the environment.

An important consequence is that the belief states, in
combination with the updating rule, form a completely
observable Markov decision process (MDP) with a con-
tinuous state space, similar to problems addressed in
the reinforcement-learning literature (Moore, 1994).
Our goal will be to find an approximation of the @
function over the continuous space of belief states and
to use this as a basis for action in the environment.
We restrict our attention to stationary, deterministic
policies on the belief state, since this class is relatively
simple and we are assured that it includes an optimal

policy (Ross, 1983).

2.3 PIECEWISE-LINEAR CONVEX
FUNCTIONS

A particularly powerful result of Sondik’s is that
the optimal value function for any POMDP can be
approximated arbitrarily well by a piecewise-linear
and convex (PWLC) function (Smallwood and Sondik,
1973; Littman, 1994). Further, there is a class of
POoMDP’s that have value functions that are exactly
PWLC (Sondik, 1978). These results apply to the op-
timal) functions as well: the () function for action a,
Qq(b) is the expected reward for a policy that starts
in belief state b, takes action a, and then behaves op-
timally. By choosing the action that has the largest
@ value for a given belief state, an agent can behave
optimally.

PwLc functions are particularly convenient because
of their representational simplicity. Tf @Q,(b) is a PWLC
function, then Q4(b) can be written:

(b)) = -b
Qa(b) maxg

for some finite set of |S|-dimensional vectors, L,. That
is, @, is just the maximum of a finite set of linear
functions of b.

So, although we are trying to find a solution to a
continuous-space MDP, we have constraints on the form
of the optimal @) functions that make this search a
great deal simpler.

3 SOME SOLUTION METHODS
FOR POMDP’s

This section sketches several methods for finding linear
or PWLC approximations to the optimal) functions
for PoMDP’s. The goal in each of them is to find @
functions that can be used to generate good behavior;
that is, we will judge the methods by the policies they
produce and not by the accuracy with which they esti-
mate the optimal @) values. None of these methods are
entirely original, but none have been used to find fast
approximations to optimal policies for POMDP’s given
the POMDP models.

3.1 TRUNCATED EXACT VALUE
ITERATION

The Witness algorithm (Cassandra et al., 1994;
Littman, 1994) finds exact solutions to discounted
finite-horizon POMDP’s using value iteration. After its
k-th iteration, the algorithm returns the exact k-step
@ functions as collections of vectors, L,, for each ac-
tion, a. The algorithm can be used to find arbitrar-
ily accurate approximations to the optimal infinite-
horizon () functions and therefore policies that are ar-
bitrarily close to optimal (Williams and Baird, 1993).

Unfortunately, the algorithm can take many, many it-
erations to find an approximately optimal value func-
tion, and for problems with a large number of observa-
tions, the size of the L, sets can grow explosively from
iteration to iteration. Nonetheless, it is often the case
that a near-optimal policy is reached long before the @
values have converged to their optimal values, so trun-
cating the value iteration process prematurely can still
yield excellent policies. We call this approach “trun-
cated exact value iteration” and denote it as Trunc-VI.

3.2 THE Qupp VALUE METHOD

Another natural approach to finding @ functions for
POMDP’s is to make use of the) values of the un-
derlying MDP. That is, we can temporarily ignore the
observation model and find the Qmpp (s, @) values for
the MDP consisting of the transitions and rewards only.
These values can be computed extremely efficiently for
problems with dozens to thousands of states and a va-
riety of approaches are available (Puterman, 1994).

With the Qumpp values in hand, we can treat all the
@vpp values for each action as a single linear func-
tion and estimate the () value for a belief state b as
Qa(b) = Y, b(s) Qupp(s,a). This estimate amounts
to assuming that any uncertainty in the agent’s cur-
rent belief state will be gone after the next action.
Thus, the action whose long-term reward from all
states (weighted by the probability of occupying the
state) is largest will be the one chosen at each step.

Policies based on this approach can be remarkably ef-
fective. One drawback, though, is that these policies
will not take actions to gain information. For instance,
a “look around without moving” action and a “stay in
place and ignore everything” action would be indistin-
guishable with regard to the performance of policies
under an assumption of one-step uncertainty. This
can lead to situations in which the agent loops forever
without changing belief state.

3.3 REPLICATED Q-LEARNING

Chrisman (1992) and McCallum (1992) explored
the problem of learning a POMDP model in a
reinforcement-learning setting. At the same time that
their algorithms attempt to learn the transition and
observation probabilities, they used an extension of
Q-learning (Watkins, 1989) to learn approximate Q
functions for the learned POMDP model. Although it
was not the emphasis of their work, their “replicated
Q-learning” rule is of independent interest.

Replicated Q-learning generalizes Q-learning to apply
to vector-valued states and uses a single vector, ¢4, to
approximate the @ function for each action a: Q4(b) =
Gq - b. For many POMDP’s, a single vector per action
is not sufficient for representing the optimal policy.
Nonetheless, this approximation is simple and can be

remarkably effective.

The components of the vectors are updated using
Agq(s) = a b(s)(r + 'yn}lelmea/(b/) —qa(s)) -

The update rule is evaluated for every s € S each
time the agent makes a state transition; « is a learning
rate, b a belief state, a the action taken, r the reward
received, and b’ the resulting belief state. This rule
applies the Q-learning update rule to each component
of g, in proportion to the probability that the agent
is currently occupying the state associated with that
component.

By simulating a series of transitions from belief state
to belief state and applying the update rule at each
step, this learning rule can be used to solve a POMDP.
If the observations of the POMDP are sufficient to en-
sure that the agent is always certain of its state (i.e.,
b(s) = 1 for some s at all times), this rule reduces
exactly to standard Q-learning and can be shown to
converge to the optimal) function under the proper
conditions (Jaakkola et al., 1994; Tsitsikilis, 1994).

The rule itself is an extremely natural extension of Q-
learning to vector-valued state spaces, since it basically
consists of applying the Q-learning rule at every state
where the magnitude of the change of a state’s value
is proportional to the probability the agent is in that
state. In fact, in addition to its use by Chrisman and
McCallum, an elaboration of this rule is used by Con-
nell and Mahadevan (1993) for solving a distributed-
representation reinforcement-learning problem.

Although replicated Q-learning is a generalization of
Q-learning, it does not extend correctly to cases in
which the agent is faced with significant uncertainty.
Consider a POMDP in which the optimal @ function
can be represented with a single linear function. Since
replicated Q-learning independently adjusts each com-
ponent to predict the moment-to-moment () values,
the learning rule will tend to move all the components
of ¢, toward the same value.

3.4 LINEAR Q-LEARNING

Linear QQ-learning is extremely similar to replicated Q-
learning but instead of training each component of ¢,
toward the same value, the components of ¢, are ad-
justed to match the coefficients of the linear function
that predicts the) values. This is accomplished by
applying the delta rule for neural networks (Rumel-
hart et al., 1986), which, adapted to the belief MDP
framework, becomes:

Aga(s) = a b(s)(r +ymaxQa (V') = ¢a - b) -

Like the replicated Q-learning rule, this rule reduces
to ordinary Q-learning when the belief state is deter-
ministic.

In neural network terminology, linear Q-learning views
{b, 7+ ymaxy, Qu (V)} as a training instance for the
function @4(-). Replicated Q-learning, in contrast,
uses this example as a training instance for the com-
ponent ¢, (s) for every s. We should expect the rules
to behave differently when the components of ¢, need
to have widely different values to solve the problem at

hand.

Like replicated Q-learning, linear Q-learning has the
limitation that only linear approximations to the op-
timal @ functions are considered. In general, this can
lead to policies that are arbitrarily poor, although this
does not appear to be true for the extremely small
POMDP’s we studied.

Note that, since the transition probabilities and re-
wards are known, it is possible to perform full back-
ups instead of the sampled backups used in tradi-
tional Q-learning. Our preliminary experiments indi-
cate that full backups do not appear to speed conver-
gence (at least not consistently across POMDP’s) and
require significant computational overhead (Littman
et al., 1995). More study will be necessary to fully
address this issue. All of the results reported here use
sample backups.

3.5 EMPIRICAL COMPARISON ON
EXTREMELY SMALL PROBLEMS

We ran each of the above methods on a battery of
POMDP’s selected from the literature, summarized in
Table 1. The details of the problems are not cru-
cial and there is not space here to describe them—
the reader is referred to the appropriate references for
descriptions.

Interestingly, all 6 POMDP’s have the property that op-
timal policies periodically reset to a problem-specific
belief state. We used a discount factor of 0.95 for all
problems. The column of Table 1 labeled “Noise” in-
dicates whether there is noise in the transitions, ob-
servations, or both. The part-painting problem has
been adapted from its original form (Littman et al.,
1995). The 4x3 grid problem was introduced by Rus-
sell and Norvig (1994) and the version here includes
a discounted criterion and returns to the initial be-
lief state after a goal instead of entering an absorbing
state.

For the experiments on truncated exact value itera-
tion, we ran the exact algorithm for approximately
100 seconds and used the output of the last complete
iteration as a solution.

The learning approaches have a large number of free
parameters which we did not optimize carefully for ei-
ther speed or performance. For each of 21 runs, we
performed 75,000 steps of learning starting from the
problem-specific belief state. During learning, actions
were selected to maximize the current () functions with

Name S| |A] || Noise

Shuttle (Chrisman, 1992) 8 3 5 TJ/O

Cheese Maze (McCallum, 1992) 1 4 7 -

Part Painting (Kushmerick et al., 1993) | 4 4 2 T/O

4x4 Grid (Cassandra et al., 1994) 16 4 2 -

Tiger (Cassandra et al., 1994) 2 3 2 0

4x3 Grid (Parr and Russell, 1995) 1 4 6 T

Table 1: A suite of extremely small POMDP’s.
| Shuttle Cheese Maze Part Painting 4x4 Grid Tiger 4x3 Grid

Trunc VI | 1.805+0.014 0.188+0.002 0.17940.012 0.1934+0.003 0.930 4 0.205 0.109 =+ 0.005
(MDP 1.809 £ 0.012 0.185+£0.002 0.1124£0.016 0.19240.003 1.1064-0.196 0.1124 0.005
Repl Q 1.355 £ 0.265 0.175£0.017 0.0034+£0.005 0.1794+0.013 1.068 4+ 0.047 0.0804 0.014
Linear Q | 1.67240.121 0.18640.000 0.13240.030 0.141 4 0.026 1.074 4 0.046 0.095 &+ 0.007
optimal — 0.186 4 0.002 0.170 £ 0.012 0.192 £ 0.002 1.041 £ 0.180 —

Table 2: Results of POMDP solution methods on the suite of extremely small problems.

a 0.10 probability of being overridden by a uniform
random action. The learning rate was decreased ac-
cording to the following schedule: 0.1 for steps 0 to
20,000, 0.01 from 20,000 to 40,000, 0.001 from 40,000
to 60,000, and then 0.0001 thereafter. The ¢4(s) com-
ponent values were initialized to random numbers uni-
formly chosen between —20.0 and 20.0. The parameter
values were chosen by informally monitoring the per-
formance of linear Q-learning on several of the prob-
lems.

Each method returned a set of vectors that constitute
linear or PWLC approximations of the) functions. An
agent that chooses actions to maximize the ¢ func-
tions was then simulated to evaluate the quality of
the induced policy. Each simulation started with the
agent in the problem-specific belief state and ran for
101 steps. This procedure was repeated 101 times and
the performance is reported as the mean reward re-
ceived with a 95% confidence interval.

Table 2 reports the results. The data for the two learn-
ing algorithms are pooled over 21 independent exper-
iments. For four of the problems, we were able to
compute the optimal @ functions using the Witness
algorithm in 25 to 120 minutes. We then simulated
the optimal vectors to obtain the row marked “opti-
mal” in the table. The two other problems possibly do
not have PWLC optimal @) functions.

The most overwhelming result is that almost every
method on almost every problem achieves practically
optimal performance. Truncated exact value itera-
tion is always statistically indistinguishable from op-
timal and tends to do no worse than the Qupp value
method. The Qupp value method tends to do no
worse than linear Q-learning which tends to do no
worse than replicated Q-learning. The Qupp value
method, which consistently performed quite well, was
the most time-efficient algorithm, requiring no more

than half a second on any problem. The learning algo-
rithms, by contrast, took between 16 seconds and 80
seconds, depending mostly on the size of the problem.
The truncated exact value iteration algorithm always
took 100 seconds, by design.

There are two significant exceptions to the overall
trend mentioned above: the Qumpp value method
was worse than linear Q-learning on the part-painting
problem and linear Q-learning was worse than repli-
cated Q-learning on the 4x4 problem. The former is a
result of the Qnmpp value method not choosing actions
to gain information, which are necessary for optimal
behavior in this problem. The latter occurs because of
the determinism in the state transitions and the rela-
tively small probability of taking random actions; this
problem can be easily fixed by adjusting the random-
action probability (Littman et al., 1995). This com-
bination can cause the goal to be infrequently visited
during learning in cases where the random initial pol-
icy leads to cyclic behavior.

4 HANDLING LARGER POMDP’s:
A HYBRID APPROACH

It is worth asking whether the results of the previous
section apply to larger or more complicated domains.
We constructed two POMDP’s designed to model a
robot navigation domain, shown in Figures 2 and 3.

One environment has 57 states (14 rooms with 4 ori-
entations each, plus a goal) and 21 observations (each
possible combination of the presence of a wall in each
of the 4 relative directions, plus “star” and three land-
marks visible when the agent faces south in three par-
ticular locations). The other has 89 states (4 orien-
tations in 22 rooms, plus a goal) and 17 observations
(all combinations of walls, plus “star”). Both include
5 actions (stay in place, move forward, turn right, turn

57 states 89 states
goal% median goal% median
1 2 3 ﬁ Repl Q 72.9 21 10.8 > 251
Linear Q 96.0 15 58.6 51
Human 100.0 15 100.0 29
Figure 2: Navigation environment with 57 states. Qmpp-no stay 100.0 16 5H7.8 40
Random Walk 46.2 > 251 25.9 > 251

K

Figure 3: Navigation environment with 89 states.

left, turn around) and have extremely noisy transitions
and observations (Littman et al., 1995).

We ran the same collection of algorithms on these two
environments with a slight change: truncated exact
value iteration was given roughly 1000 seconds. Perfor-
mance was measured slightly differently. The policies
were evaluated for 251 trials, each consisting of a run
from a problem-specific initial belief state to the goal.
For these two environments the initial belief state was
a uniform distribution over all states except the goal
state. If the agent was unable to reach the goal in 251
steps, the trial was terminated.

Table 3 reports the percentage of the 251 runs in which
the agent reached the goal and the median number
of steps to goal over all 251 runs. For the learning
algorithms, performance was measured as a median of
21 independent runs.

This time, none of the approaches gave even passable
results, with many test runs never reaching the goal af-
ter hundreds of steps. Truncated exact value iteration
was able to complete two iterations in about 4 sec-
onds and made no additional progress for up to 1500
seconds. The Qupp value method is deterministic, so
the reported results are based on the best policy it can
achieve. The learning approaches have the capability

57 states 89 states
goal% median goal% median
Trunc VI 62.9 150 44.6 > 251
(MDP 47.4 > 251 25.9 > 251
Repl Q 5.2 > 251 2.8 > 251
Linear Q 8.4 > 251 5.2 > 251

Table 3: Results of POMDP solution methods on the
two navigation environments.

Table 4: Results of POMDP solution methods when
seeded with the Qupp values on two navigation envi-
ronments.

of adapting and improving but are unable to reach the
goal state often enough to learn anything at all. Thus,
all 4 methods fail, but for different reasons.

This suggests the possibility of a hybrid solution. By
computing the Qupp values and using them to seed
the ¢, vectors for learning, we can take advantage of
the strengths of both approaches. In particular, the
hope is that the Qnpp values can be computed quickly
and then improved by the learning algorithms.

Table 4 summarizes the results of initializing the two
learning algorithms using the Qnmpp values in place
of random vectors. Training and testing procedures
followed those of the other navigation experiments.

In both environments, the linear Q-learning algorithm
was able to use the initial seed values to find a bet-
ter policy (almost doubling the completion percentage
and halving the steps to the goal). The replicated Q-
learning algorithm, on the other hand, actually made
the performance of the Qnpp value method worse.

The performance of the hybrid algorithm appears
quite good. However, the complexity of the naviga-
tion environments makes direct comparison with an
optimal policy out of the question. To get a qualita-
tive sense of the difficulty, we created an interactive
simulator for the two navigation environments which
included a graphical belief state display. A single hu-
man subject (one of the authors) practiced using the
simulator and then carried out testing trials with the
results reported in Table 4. In the smaller environ-
ment, the testing period lasted for 45 trials and the
longest run was 57 steps. The median performance of
15 steps per trial is exactly the same as that of the hy-
brid algorithm. In the larger environment, the testing
period lasted for 31 trials and the longest run was 73
steps indicating substantial room for improvement in
the existing algorithms.

After further study, we discovered that the primary
reason for the poor performance of the straight Qnmpp
value method is that the agent chooses the “stay in
place” action in some belief states and sometimes be-
comes trapped in a cycle. As a test of this hypothesis,
we removed this action from the set of actions that
can be chosen by the Qnpp value method and reran
the evaluation with results given in Table 4. Surpris-

i ﬁ .
S S

Figure 4: A 33-state navigation environment that can-
not be solved with a single linear function per action.

ingly, decreasing the set of options helped the Qnmpp
value method reach a level of performance comparable
to that of linear Q-learning. Thus, the learning al-
gorithm applied to the navigation environments may
be retaining the important parts of the Qmpp policy
while simply learning to suppress the “stay in place”
action—a reasonable approach to attaining good per-
formance on these POMDP’s. For comparison purposes,
we have included the performance of a random walk
policy where actions (except “stay in place”) are cho-
sen randomly.

Seeding linear Q-learning using the Qmpp values leads
to a promising method of solving larger POMDP’s than
have been addressed to date. More study is needed to
understand the strengths and limitations of this ap-
proach.

5 MORE ADVANCED
REPRESENTATIONS

None of the algorithms reach the goal in the 89-state
problem all the time: clearly optimal performance has
not yet been reached. As discussed in Section 2.3,
piecewise-linear convex functions can approximate the
optimal () functions as closely as necessary. In con-
trast, the linear functions used by the learning algo-
rithms can result in arbitrarily bad approximations.

5.1 THE NEED FOR A MORE
ADVANCED REPRESENTATION

To drive this point home, we designed a navigation
problem (see Figure 4) for which any linear approxi-
mation to the @ functions is guaranteed to be subopti-
mal. The parameters of the environment follow those
of the navigation environments discussed previously.
There are two significant differences: the two rooms
marked with minus signs in the figure are associated
with negative reward, and the agent starts with equal
probability facing North in one or the other of the two
rooms marked with robot symbols in the figure.

An agent starting in the left start state should move
forward, turn right, and move forward again. From
the right start state, the agent should move forward,

turn left and move forward again. The difficulty is
that the two scenarios are distinguished only by the
configuration of walls in the initial state, which can
only be perceived if the agents chooses to stay in place
for a step so that it may receive an observation for
the initial state. Because actions precede observations,
staying in place is an action to gain information in this
problem.

The fact that the agent needs to take an action to
gain information and then execute the same action
(forward) regardless of the outcome, is sufficient to
destroy any single-vector-per-action approximation of
the optimal policy (Littman et al., 1995). Although
we understand the nature of this particular problem,
a very interesting (and open) problem is how to de-
termine the number of vectors needed to represent the
optimal policy for any given POMDP.

5.2 A PWLC Q-LEARNING ALGORITHM

A simple approach to learning a PWLC @ function is to
maintain a set of vectors for each action and use a com-
petitive updating rule: when a new training instance
(i.e., belief state/value pair) arrives, the vector with
the largest dot product is selected for updating. The
actual update follows the linear Q-learning rule. It is
possible that the different vectors will come to cover
different parts of the state space and thereby represent
a more complex function than is possible with a single
vector.

To show the potential gain of utilizing multiple vec-
tors per action, we ran experiments on the 33-state
navigation environment. We ran 21 independent tri-
als of 75,000 learning steps of linear Q-learning as well
as truncated exact value iteration and the Qnpp value
method. We compared these to the 3-PwrLc Q-learning
algorithm, which uses the competitive approach de-
scribed above with 3 vectors per action. In analogy to
the hybrid algorithm of the previous section, we initial-
ize all 3 vectors for each action with the appropriate
Qmpp values.

The evaluation criterion was the same as for the 57 and
89-state navigation environment experiments. Table 5
shows the results and, as anticipated, the single vector
methods perform poorly.

Although the 3-pwrc algorithm performs astonish-
ingly well on this problem, its performance on other
problems has been inconsistent. The primary difficulty
is that noisy updates can cause a vector to “sink” be-
low the other vectors. Since this approach only up-
dates vectors when they are the largest for some be-
lief state, these sunken vectors can never be recov-
ered. A related problem plagues almost all competitive
learning methods and in our informal experiments, we
found this to occur quite often. We have considered
some extensions to address this problem, but we have
not yet found a reliable solution.

33 states
goal% median
trunc VI 39.8 > 251
(MDP 17.9 > 251
Linear Q 46.6 > 251
3-pwLC Q 98.4 5
Qmpp-no stay 14.3 > 251

Table 5: Results of POMDP solution methods on
the specially-constructed 33-state navigation environ-
ment.

A classic approach to the sunken-vector problem is to
avoid hard “winner-take-all” updates. Parr and Rus-
sell (1995) use a differentiable approximation of the
max operator and find they can produce good policies
for the 4x4 and 4x3 grid problems. The approach is
promising enough to warrant further study including
comparisons on the difficult navigation environments
described in this paper.

6 CONCLUSIONS

We can now obtain high quality policies for a class of
POMDP’s with nearly 100 states. We predict that these
techniques can be honed to produce good policies for
a wide variety of problems consisting of hundreds of
states. But to handle the thousands of states needed
to address realistic problems, other techniques will be
needed.

Other approaches to scaling up, including various
kinds of factoring and decomposition of the transitions
and belief states (e.g., the sort of approach Boutilier et
al. (1995) and Nicholson and Kaelbling (1994) used in
fully observable domains), may be able to be used in
concert with techniques described in this paper to yield
practical results in moderately large POMDP problems.

References

Astrom, K. J. (1965). Optimal control of Markov de-
cision processes with incomplete state estimation.

J. Math. Anal. Appl., 10:174-205.

Bertsekas, D. P. (1987). Dynamic Programming: De-
terministic and Stochastic Models. Prentice-Hall.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995).
Exploiting structure in policy construction. In
Proceedings of the International Joint Conference
on Artificial Intelligence.

Cassandra, A. (1994). Optimal policies for partially
observable Markov decision processes. Technical
Report CS-94-14, Brown University, Department
of Computer Science, Providence RI.

Cassandra, A. R., Kaelbling, L. P., and Littman,
M. L. (1994). Acting optimally in partially ob-
servable stochastic domains. In Proceedings of the

Twelfth National Conference on Artificial Intelli-
gence, Seattle, WA.

Cheng, H.-T. (1988). Algorithms for Partially Ob-
servable Markov Decision Processes. PhD thesis,
University of British Columbia, British Columbia,
Canada.

Chrisman, L. (1992). Reinforcement learning with per-
ceptual aliasing: The perceptual distinctions ap-
proach. In Proc. Tenth National Conference on

AT (AAAI.
Connell, J. and Mahadevan, S. (1993). Rapid task

learning for real robots. In Robot Learning.
Kluwer Academic Publishers.

Jaakkola, T., Jordan, M. 1., and Singh, S. P. (1994).
On the convergence of stochastic iterative dy-
namic programming algorithms. Neural Compu-
tation, 6(6).

Kushmerick, N., Hanks, S., and Weld, D. (1993). An
Algorithm for Probabilistic Planning. Technical
Report 93-06-03, University of Washington De-
partment of Computer Science and Engineering.
To appear in Artificial Intelligence.

Littman, M., Cassandra, A., and Kaelbling, L. (1995).
Learning policies for partially observable environ-
ments: Scaling up. Technical Report CS-95-11,
Brown University, Department of Computer Sci-
ence, Providence RI.

Littman, M. L. (1994). The Witness algorithm:
Solving partially observable Markov decision pro-
cesses. Technical Report CS-94-40, Brown Uni-
versity, Department of Computer Science, Provi-

dence, RI.

Lovejoy, W. S. (1991). A survey of algorithmic meth-
ods for partially observable Markov decision pro-
cesses. Annals of Operations Research, 28:47-66.

McCallum, R. A. (1992). TFirst results with utile
distinction memory for reinforcement learning.
Technical Report 446, Dept. Comp. Sci., Univ.
Rochester. See also Proceedings of Machine
Learning Conference 1993.

Moore, A. W. (1994). The parti-game algorithm for
variable resolution reinforcement learning in mul-
tidimensional state spaces. In Advances in Neu-
ral Information Processing Systems 6, San Mateo,
CA. Morgan Kaufmann.

Nicholson, A. and Kaelbling, L. P. (1994). Toward
approximate planning in very large stochastic do-
mains. In Proceedings of the AAAI Spring Sym-
posium on Decision Theoretic Planning, Stanford,
California.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The
complexity of Markov decision processes. Mathe-
matics of Operations Research, 12(3):441-450.

Parr, R. and Russell, S. (1995). Approximating opti-
mal policies for partially observable stochastic do-
mains. In Proceedings of the International Joint
Conference on Artificial Intelligence.

Puterman, M. L. (1994). Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY.

Ross, S. M. (1983). Introduction to Stochastic Dy-
namic Programming. Academic Press, New York.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by er-
ror backpropagation. In Rumelhart, D. E. and
McClelland, J. L., editors, Parallel Distributed
Processing: Fxplorations in the microstructures of

cognition. Volume 1: Foundations, chapter 8. The
MIT Press, Cambridge, MA.

Russell, S. J. and Norvig, P. (1994). Artificial Intel-
ligence: A Modern Approach. Prentice-Hall, En-
glewood Cliffs, NJ.

Smallwood, R. D. and Sondik, E. J. (1973). The op-
timal control of partially observable Markov pro-
cesses over a finite horizon. Operations Research,

21:1071-1088.

Sondik, E. J. (1978). The optimal control of par-
tially observable Markov processes over the infi-
nite horizon: Discounted costs. Operations Re-

search, 26(2).

Tsitsikilis, J. N. (1994). Asynchronous stohcastic
aproximation and Q-learning. Machine Learning,
16(3).

Watkins, C. J. (1989). Learning with Delayed Rewards.
PhD thesis, Cambridge University.

Williams, R. J. and Baird, L. C. 1. (1993). Tight
performance bounds on greedy policies based on
imperfect value functions. Technical Report NU-
C(CS-93-13, Northeastern University, College of
Computer Science, Boston, MA.

